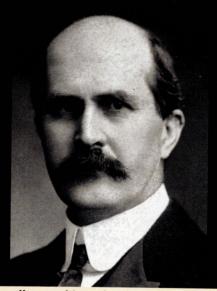
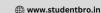
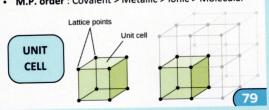
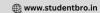
SOLID STATE

Types of Crystals			
Comparison	Amorphous solids	Crystalline solids	
Repeating Units	Irregular	Regular	
Shapes	No shape	Exist	
Melting Point	Not defined	Fixed	
Chemical Nature	Isotropic	Anisotropic	
Physical Nature	Pseudo Solids	True Solids	
Symmetry Order	Unsymmetrical	Symmetrical	
Range	Short Range	Long Range	
Example	Glass, wax, Rubber, Plastic etc	Diamond, NaCl, Quartz, ZnS etc.	


Looks something like this




Broadly speaking, the discovery of X-rays has increased the keenness of our vision ten thousand times, and we can now 'see' the individual atoms and molecules.


William Bragg

Solids on basis of constituent particles				
Types	Particles	Forces	Example	
IONIC	lons	Electrostatic	KCI, Na₂SO₄, NaF	
COVALENT	Atoms	Covalent	Diamond, Graphite	
METALLIC	Metal	Metallic	Fe(s), Zn(s)	
MOLECULAR	Molecule	London Dispersion	NH ₃ (s), SO ₂ (s), I ₂ (s), He(s)	
Molecular Solids Classified				
Types	Nature	Forces	Example	
Non-Polar	Soft	London	Ar, CCl ₄ , H ₂ , l ₂ , CO ₂	
Polar	Soft	Dipole-Dipole	HCl, SO₂	
H-Bonding	Hard	H-Bonding	H₂O (ice)	

- Only Metallic Solids, ionic solids in molten states & Graphite (Covalent) are electrically conducting.
- M.P. order: Covalent > Metallic > Ionic > Molecular

Classification of unit cell: On basis of shape

Six parameters used to define lattice

- a,b,c : Defining dimensions of sides
- α, β, γ : Defining angles between sides.

7 Crystal Systems and 14 Bravais Lattices

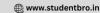
Cubic, Tetragonal, Orthorhomic, Monoclinic,

Triclinic, Rhombohedral, Hexagonal

Hexagonal has 8 faces (others have 2)

Remember as C TOM THeRe (SEE TOM THERE)

Crystal	Sides	Angles	Туре
Cubic	a=b=c	α=β=γ=90°	P,B,F
Tetragonal	a=b≠c	α=β=γ=90°	P,B
Orthorhombic	a≠b≠c	α=β=γ=90°	P,B,F,E
Monoclinic	a≠b≠c	α=γ=90°;β≠90°	P,E
Triclinic	a≠b≠c	α≠β≠γ≠90°	Р
Rhombohedral	a=b=c	α=β=γ≠90°	Р
Hexagonal	a=b≠c	α=β=90; γ=120°	Р


P = Primitive Centred; B = Body Centred;

F = Face Centred; E = End Centred

14 B.L.

Lattice Points

- 1 Corner is shared by 8 unit cells (1/8 Contribution)
 - 1 Face Centred shared by 2 unit cells (1/2 Cont.)
- 1 Body centred is shared by 2 unit cells (1/2 Cont.)
- 1 Edge Centred is shared by 4 unit cells

Types of Unit cells

- 2r = a
- Packing Fraction = 0.52 or $\pi/6$
- Void Fraction = 0.48
- Coordination Number = 6
- Size of body centre void = 0.732r
- Size of Face Center Void = 0.414r
 - Nearest Neighbor Distance = a
 - Next Nearest Neighbor = $a\sqrt{2}$
 - e.g. Pollonium
 - $4r = a\sqrt{3}$
 - Packing Fraction = 0.68 or $\sqrt{3}\pi/8$
 - Void Fraction = 0.32
- Coordination Number = 8
- Size of edge centre void = 0.155r
- Size of Face Center Void = 0.155r
- Nearest Neighbor Distance = $a\sqrt{3}/2$ Body Centred
- Next Nearest Neighbor = a
- · e.g. Iron, Sodium Etc.

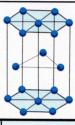
Primitive 7=1

Z=2

81

$$4r = a\sqrt{2}$$

- Packing Fraction = 0.74 or $\sqrt{2}\pi/6$
- Void Fraction = 0.26
- Coordination Number = 12
- Size of edge centre void = 0.414r
- Size of Face Center Void = 0.414r
- Nearest Neighbor Distance = $a/\sqrt{2}$
- Next Nearest Neighbor = a
- e.g. Al, Ni, Fe, Pd, all solid noble gases



- Height = $4r\sqrt{2/3}$
- Packing Fraction = 0.74
- Void Fraction = 0.26
- Coordination Number = 12

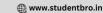
Hexagonal Closed Packaging (HCP) Z=6

For Diamond

Z = 8

P.E. = 34%

Dist. b/w C-C $2r = \sqrt{3}a/4$


Density of a unit cell

$$\rho = \frac{Z \times M}{a^3 \times N_A}$$

Z = No. of Atoms per unit cell a = Edge length in pm

M = Molar Mass (g/mol)

N_Δ= Avogadro's no.

Types of Packing of Crystals

1-D Packing or Packing Along x-axis

Coordination Number = 2

2-D Packing

Possibility 1

Square Closed Packing (SCP)
Packing Efficiency = 74.8%
Coordination Number = 4

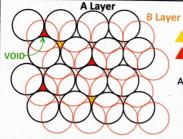
Possibility 2

Hexagonal Closed (HCP)
Packing Efficiency = 91%
Coordination Number = 6

3-D Packing: Case 1

Possibility 1

Simple Cubic Cell (SCC)
Packing Efficiency = 74.8% **A.A.A.A.** Arrangement


Possibility 2

Body Centre Unit cell (BCC) Packing Efficiency = 68% A.B.A.B.A. Arrangement

(83)

3-D Packing: Case 2 (Hexagonal)

For n atoms, n Octahedral 2n Tetrahedral

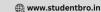
NOTE

A third layer over the structure will exhibit more options

Third Layer over Td Void

- Hexagonal Closed (HCP)
- Hexagonal Unit Cell
- Packing Efficiency = 74%
- A.B.A.B.A. Arrangement
- Coordination no. = 12

Third Layer over Oh Void


- Cubic Closed (CCP)
- Face Centred Unit Cell
- Packing Efficiency = 74%
- A.B.C.A.B.C. Arrange
- Coordination no. = 12

C.N. may vary depending upon location of atom in cell

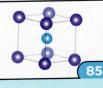
Formula of a compound

- Element 'B' forms ccp structure
 'A' occupies half of
- the octahedral voids
- Oxygen atoms occupy all tetrahedral voids
- $n_B = 4$ (ccp structure) Octahedral voids = n_B $n_A = 2$ (Half of n_B) Tetrahedral voids = $2 \times n_B$
- $n_0 = 8 \text{ (Twice of } n_B)$
- $2: 4: 8 \rightarrow 1: 2: 4$ Answer: AB_2O_4

84

Radius Ratio Table				
R.R.	C.N.	Structure	Туре	Examples
0-0.155	2	Linear	- 1	•
0.155-0.225	3	Triangular		
0.225-0.414	4	Tetrahedral	ZnS	CuCl, CuBr, HgS
0.414-0.732	6	Octahedral	NaCl	MgO, NaBr,CaS
0.732-1	8	Cubic	CsCl	CsI,NH₄Br,TiBr
1	12	FCC or HCP	• ; ;	• 1

Different Ionic Crystals


AB: NaCl Rock Salt Type

- Na⁺: Octahedral Sites
- Cl⁻: CCP Arrangement
- CN of Na = 6 & Cl = 6.
- Z _{eff} 4
- Tetrahedral Voids Are Empty
- Halides of Li, Rb, AgF, AgBr, NH₄Cl, NH₄Br, NH₄I

AB: Caesium Chloride (CsCl) Type

- Cs⁺: Body Center
- Cl⁻: Corners of the cube
- . CN of Cs = 8 & Cl = 8.
 - Z .# 1
- CsCl, CsBr, Csl, Tll, TlBr, TlCN

AB: ZnS Blende Type

- Zn⁺: Alternate Td Sites
- S²⁻: CCP Arrangement
- CN of Zn = 4 & S = 4.
- · Z eff 4
- · CuCl , CuBr, Agl

AB₂: CaF₂: Fluorite Type

- Ca²⁺: CCP Arrangement
- F⁻: All Tetrahedral sites
- CN of Ca = 8 & F = 4.
- Z _{eff} 4
- BaF₂, BaCl₂, CdF₂, SrCl₂, PbF₂

A₂B: Anti-Fluorite Type

- Na⁺: All Tetrahedral sites
- O²⁻: CCP Arrangement
- CN of Na = 4 & O = 8.
- Z eff= 4
- Na₂O, Li₂O

Rutile Structure (TiO₂) : O²- forming HCP while Ti⁴+ ions occupy tetrahedral Voids

Pervoskite Structure (CaTiO₃): Ca²⁺ in corner of the cube, O²⁻ in the face centre & Ti⁴⁺ at the centre of the cube

86

Defects in Solids		
Non-Stoichiometric Defects		
The formula of the compound changes		
netric Defects		
Frenkel Defect		
Some lons leave their Normal Site Density Same Different size of ions AgCl, AgBr Compounds with high Coordination number.		
Ometric Defects		
Metal Excess Defects		

Can be due to Anion Vacancies or

Extra cations in interstitial site

Metal Deficiency Defect

FeO shows this defect which is mostly found in the composition of Fe (0.95). E.g. Fe_{0.98}O

Fe2+ goes missing and Fe3+ appears

Metal Excess Defect due to Anion Vacancy

- Negative ion missing.
- Electron occupy empty space.
- These are called F-Centers
- E.g. NaCl heated in Na Vapours gives yellow color. LiCl gives Pink • e- in interstitial Color & KCl gives Violet Color
- - F-Centers Present sites cause colors

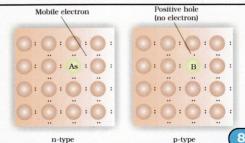
Metal Excess Defect due to Cation Vacancy

- Extra cations present in the interstitial sites of the crystal.
- Flectrons in other sites maintain electrical neutrality.

Zinc oxide is white in colour at room temperature. On heating it loses oxygen and turns yellow

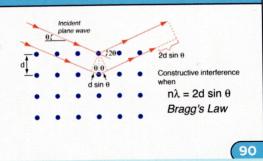
$$ZnO \rightleftharpoons Zn^{2+} + \frac{1}{2}O_2 + 2e^{-}$$
 Yellow Colour due to 2 Electrons

Crystals with either type of metal excess defect act as semiconductors



Electrical Properties of Solids			
Property	Conductors	Insulators	Semiconductors
Conductivity Range	10 ⁴ -10 ⁷	10 ⁻²⁰ to 10 ⁻¹⁰	10 ⁻⁶ to 10 ⁴
Band Gap of V.B. and C.B.	Overlap	HIGH	Low

Semiconductors


- On Heating, Some electrons can jump from V.B. to C.B. in Pure Semiconductors (Intrinsic).
- Very Low Conductivity, Conductivity increases with doping (Extrinsic) - 2 types
- n-type semiconductor: Electron rich impurities added (G-14, Se or Ge doped with G-15 P or As)
- p-type semiconductor: Electron rich impurities added (G-14, Se or Ge doped with G-13 B or Al)

Some Common Magnetic and Dielectric Substance		
Type of Substance	Examples	
Diamagnetic	N₂, NaCl, Zn, Cd, Cu ⁺ , TiO₂	
Paramagnetic	Transition Metals (Cr, Mn, Ni, Co), metal ions (Cu ²⁺ , Ni ²⁺), M-oxides (CuO, VO ₂), molecules (NO & O ₂)	
Ferromagnetic	Ni, Fe, Co, CrO₂	
AntiFerromagnetic	MnO, Mn ₂ O ₃ , MnO ₂	
Ferrimagnetic	Fe₃O₄ and pyrites	
Ferroelectric	Rochelle salt, KH₂PO₄	
Anti-Ferroelectic	PbZrO₃	
	Bragg's Law	

